---
jupytext:
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.13.8
kernelspec:
display_name: 'Python 3'
name: python3
---
(inflowSeries)=
# inflowSeries
Stochastic inflow data.
| | |
|---|---|
|Input connections||
|Output connections||
|License|PRODRISK_OPEN|
|Release version|9.6.1|
```{contents}
:local:
:depth: 1
```
## Attributes
```{code-cell} ipython3
:tags: ['remove-input', 'full-width']
import itables as itables
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True, connected=True)
import pandas as pd
from IPython.core.display import HTML
table = pd.read_csv('../../../attributes.csv')
core_type_dict = {'int' : 'integer','double':'float','string':'string','int_array':'list-of-integer-values','double_array':'list-of-double-values','xy':'table-xy-curve','xy_array':'list-of-tables','txy':'time-series','txy_stochastic':'stochastic-time-series'}
object_attributes = table[table["Object type"] == "inflowSeries"].reset_index().iloc[:, 1:]
for index, row in object_attributes.iterrows():
object_attributes.at[index, "Attribute name"] = f"""{row['Attribute name']}"""
object_attributes.at[index, "Core data type"] = f"""{row['Core data type']}"""
itables.show(object_attributes,
dom='tlip',
search={'regex': True, "caseInsensitive": True},
column_filters='header',
columns=[
{
'name': '',
'className': 'dt-control',
'orderable': False,
'data': None,
'defaultContent': '',
},
{
'name': 'Attribute name',
'className': 'dt-body-left'
},
{
'name': 'Python data type',
'className': 'dt-body-left'
},
{
'name': 'Core data type',
'className': 'dt-body-left'
},
{
'name': 'unit',
'className': 'dt-body-left'
},
{
'name': 'I/O',
'className': 'dt-body-left'
},
{
'name': 'License',
'className': 'dt-body-left'
},
{
'name': 'Version added',
'className': 'dt-body-left'
},
{
'name': 'Description',
'visible': False
}
]
)
HTML('''''')
```
(inflowSeries:name)=
### name
Inflow series name (unit: none)
(inflowSeries:lognormal_centers)=
### lognormal_centers
Center points from k-means clustering used in the lognormal inflow model (unit: none)
(inflowSeries:standardDeviation)=
### standardDeviation
Standard deviation in statistical model. The standard deviation in the scaled version of the inflow input (see relativeAverageInflow). (unit: none)
(inflowSeries:autoCorrelation)=
### autoCorrelation
Autocorrelation coefficients in statistical model, represents the autocorrelation of the inflowSeries with all the other inflowSeries, including itself. (unit: none)
(inflowSeries:cutCoeffs)=
### cutCoeffs
Cut coefficients for inflow series. The cut coefficients of the inflow is given as an array of XY tables. Each table in the array corresponds to a price level in ascending order. The x values are all 0, while the y values represent the coefficients. (unit: EUR/Mm3)
(inflowSeries:outcomeValue)=
### outcomeValue
Outcomes for principal components in statistical model. (unit: none)
(inflowSeries:inflowScenarios)=
### inflowScenarios
Inflow scenarios. The number of scenarios must be the same as the number of scenarios in the price. Input should be given for at least 52 weeks (this input is used in scaling local inflow for each module connected to the inflow series). (unit: m3/s)
(inflowSeries:relativeAverageInflow)=
### relativeAverageInflow
Relative average inflow in the statistical model. The relativeAverageInflow is a scaled version of the inflow input with weekly resolution. (unit: none)
(inflowSeries:histAverageInflow)=
### histAverageInflow
If set, this value is used in scaling of local inflow to each module. As default, the average over all scenarios for the last 52 weeks of the inflow scenarios is used. (unit: Mm3/year)
(inflowSeries:seriesId)=
### seriesId
Id used to connect module and inflowSeries (unit: none)
(inflowSeries:outcomeProbability)=
### outcomeProbability
Probabilities for principal components in statistical model. (unit: none)
(inflowSeries:standardized_weekly_inflows)=
### standardized_weekly_inflows
Standarized weekly inflows, used to generate the inflow model. (unit: Mm3/week)